Arbitrary-precision arithmetic — In computer science, arbitrary precision arithmetic indicates that calculations are performed on numbers whose digits of precision are limited only by the available memory of the host system. This contrasts with the faster fixed precision… … Wikipedia
Sequence alignment — In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences.[1]… … Wikipedia
sequence analysis — A series of questions about how social processes are ordered, either temporally or spatially, together with the techniques for answering these. Many areas of sociology are concerned with events or actions in their temporal context or with what we … Dictionary of sociology
arbitrary primer — An oligonucleotide primer whose sequence is chosen at random, rather than one whose sequence matches that of a known locus. These primers therefore amplify DNA fragments which have not been pre selected … Glossary of Biotechnology
Low-discrepancy sequence — In mathematics, a low discrepancy sequence is a sequence with the property that for all values of N , its subsequence x 1, ..., x N has a low discrepancy.Roughly speaking, the discrepancy of a sequence is low if the number of points in the… … Wikipedia
Multiple sequence alignment — A multiple sequence alignment (MSA) is a sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they… … Wikipedia
Mayer–Vietoris sequence — In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to… … Wikipedia
Choice sequence — In intuitionistic mathematics, a choice sequence is a constructive formulation of a sequence. Since the Intuitionistic school of mathematics, as formulated by L. E. J. Brouwer, rejects the idea of a completed infinity, in order to use a sequence… … Wikipedia
Adams spectral sequence — In mathematics, the Adams spectral sequence is a spectral sequence introduced by Adams (1958). Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a… … Wikipedia
Eilenberg-Moore spectral sequence — In mathematics, in the field of algebraic topology, the Eilenberg Moore spectral sequence addresses the calculation of the homology groups of a pullback over a fibration. The spectral sequence formulates the calculation from knowledge of the… … Wikipedia
EHP spectral sequence — In mathematics, the EHP spectral sequence is a spectral sequence used for inductively calculating the homotopy groups of sphereslocalized at some prime p . It is described in more detail in harvtxt|Ravenel|2003|loc=chapter 1.5 and… … Wikipedia